NEUROMONITORING AND ANESTHESIA CONSIDERATIONS

Martha Richter, MSN, CRNA
OBJECTIVES

• The student will
 – 1. Review the types of neuromonitoring currently in use
 – 2. Identify possible procedural applications for monitoring
 – 3. Develop anesthesia care plan based on sound rationale when neuromonitoring is used
NEUROMONITORING

- ICP
- EEG
- EMG
- SSEP
- MEP
- Cerebral oxygenation guides
ICP MONITORING

• Direct measure of ICP
 – Ventricular catheters
 – Subdural/subarachnoid bolts
 – Epidural transducers
 – Intraparenchymal fiberoptic devices

» Barash et al
ICP MONITORING

• ICP determined by
 – Brain mass – 80%
 – Blood flow -10%
 – CSF volume – 10%
ICP MONITORING

- $>15-20 = \text{affects CBF}$
- $\text{CPP} = \text{MAP - ICP}$
- $>70 \rightarrow \text{Improved outcomes}$
ICP MONITORING

• Physical setup
• Connection of device to transducer
• Requires watertight fluid interface
• Deformation of transducer membrane → converted to electrical pulsations → amplified → displayed as waveform
ICP MONITORING

• Requires zeroing to room air
• Catheter tip transducers only zeroed prior to insertion
• External transducers can be zeroed anytime
ICP MONITORING

- Ventricular
- GOLD STANDARD FOR ACCURACY
- Allows for drainage/measurement
- Subdural/epidural less accurate
ICP MONITORING

• Uses
 – Effects of intracranial masses
 – Influences Rx of ICP control
 – Drainage
 – Prognostic predictor
 • SAH
 • Hydrocephalus
 • Encephalitis
 • Venous sinus thrombosis
 • Ischemic infarct w/ swelling
 • Hepatic encephalopathy
ICP MANAGEMENT

• Dec brain water
 – Hyperosmolar diuretics
 • Mannitol w/intact BBB
 – .25G-1G/kg
 – Loop diuretics
 • Lasix
 – Corticosteroids

 » Mass, flow, csf
ICP MANAGEMENT

• Reduce CSF volume
 – Drainage
 • Ventricular
 • Lumbar subarachnoid
 • Head elevation

mass,flow,csf
ICP MANAGEMENT

• Reduce CBF-not recommended 1st 24 hrs post trauma
 – Hyperventilation
 • Hypocapnia no less than 25
 – Pharmacologic vasoconstriction
 • Etomidate, propofol, barbs
 – Head elevation
 – Minimize possibilities of inc intrathoracic pressures
 • Sedation, paralysis
 » Mass, flow, csf
ICP MANAGEMENT

• Control CBF
 – B/P management
 – Labetalol
 – Trimethaphan

» Mass, flow, csf
ICP MANAGEMENT

• Control CMRO2
 – Hypothermia
 – Barb-induced coma
ICP MANAGEMENT

• Decrease brain mass
 – removal
 – chemotherapy
 – Radiation therapy
 – Decompression
 – Craniectomy

 » Mass, flow, csf
ANESTHESIA INFLUENCES

• In addition:
 • Autoregulation is impaired by
 – Inhalational anesthetics
 – Direct-acting vasodilators
 • Adenosine
 • Prostacyclin
 • Ca++Channel blockers
 • NTG
 • Nitroprusside
EEG MONITORING

• Assists in evaluation CPP
 – Carotid endarterectomy
 – Controlled hypotension
• Seizure evaluation/surgery
 – Mapping
 – resection
EEG MONITORING

• Technician looks for signs of:
 • Activation
 – High-frequency
 – low-voltage
 • Depression
 – Low-frequency
 – High voltage
EEG

- Technician looks for signs of:
 - Activation
 - Light anesthesia
 - Surgical stimulation
 - Depression
 - Deep anesthesia
 - Cerebral compromise
EEG

• “most anesthetics produce a biphasic pattern…initial activation…followed by dose-dependent depression”

 » Morgan et al
Agents to activate
subanesthetic inhalationals
lo dose barbs/benzos
sm doses etomidate
N2O
ketamine
EEG AND ANESTHESIA

• Agents that depress
 – 1-2 MAC gases
 – Barbs/propofol/etomidate
 – Narcotics-dose dependent
EEG AND ANESTHESIA

• Other things that we influence:
 • Activate
 – Mild hypercapnia
 – Stimulation (surgical)
 – Early hypoxia
 • Depress
 – Hypocapnia
 – Hypothermia
 – Late hypoxia
EVOKED POTENTIALS

• SSEP
 – Measures activity of dorsal spinal column and cortex

• MEP
 – Measures activity of ventral spinal column
 – Contra after cranial injury/seizures
 – Percut needle electrode c-spine
EVOKED POTENTIALS

• Technician looks at poststimulation latencies
 – Short = from n stim or brain stem
 • Least affected by anes
 – Medium = primarily cortical
 – Long = primarily cortical
 • Most sensitive to anes
EVOKED POTENTIALS

• SSEP-sensory and motor paths
 – Spinal cord resections
 – Instrumentation of spine
• MEP-motor paths
 – AAA (cord perfusion)
• BAERs (brain stem auditory response)
 – VIIIth cranial Nerve-auditory pathways
 – Microvascular decomp (tic)
 – Acoustic neuroma/meningioma
 – Posterior fossa procedures
EVOKED POTENTIALS

• Visual EP
 – Optic n and upper brain stem
 – Large pituitary tumors
 – Craniopharyngiomas
 – Suprasellar meningiomas
EVOKED POTENTIALS AND ANESTHESIA

• VOLATILES
 – Dec amplitude and inc latency
 – Most inhalationals = .5 MAC
 – N2O controversy
 • Dec amplitude
EVOKED POTENTIALS AND ANESTHESIA

• OTHER ANESTHETIC DRUGS

• Muscle relaxants
 – Talk to tech
 – Often 1-2 tw needed

• Narcotics, benzos and barbs
 – Usually dose related effects
 – High doses = dec amp and inc latencies
 – Demerol and Ketamine may inc amplitude
EMG

• Records electrical activity of muscle
• Indirect indicator of innervating nerve function
• May be recorded continuously or measured non continuously
EMG

• May monitor any muscle to evaluate cranial nerves or peripheral nerves
 – Tongue
 – Face
 – sphincters
EMG

• Cranial nerve evaluation
 • Trigeminal
 • Glossopharyngeal
 • Vagus
 • Spinal accessory
 • hypoglossal
 – Posterior fossa (acoustic neuroma)
 – Vestibular neurectomy
 – Temporal bone
 – Parotid
EMG

• Surgeon may also directly stimulate n. with sterile n stimulator and observe muscles
EMG

• Continuous monitoring
 – Pedicle screw placement
 • Helps evaluate proper tightening of screw
 – Tethered spinal cord release
 • Lower extremities
 • Anal sphincters
 – Selective dorsal rhizotomy
 • Reduces spasticity e.g. CP
 • Monitoring shows reduction of excitation of motor nerves
EMG

• Will need to show TOF X4 prior to surgical testing.
SjvO2 MONITORING

- Jugular venous oxygen saturation
- Obtained from triple lumen catheter inserted into jugular bulb
- Attached to pressurized system
- Reflects degree of oxygen extraction by brain
SjvO2 MONITORING

• Calculated by %O2 bound to O2
• Normal = 55-75%
 – <55%
 – Blood flow insufficient to meet requirements → greater amount extracted
 – >75%
 – Brain injury so great → unable to extract O2.
 – Brain death: SjvO2 = SaO2
SjvO2 MONITORING

• Limits
 – Only allows sampling one side of brain
 – Non-specific
SjvO2 SAMPLING

• Drawn from distal port
• Heparinized syringe (as with any blood gas)
• Catheter flushing should be SLOW and GENTLE (prevents retrograde flow into head)
• Be sure the lab distinguishes this from mixed venous gases!