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A B S T R A C T

Acute kidney injury (AKI) is common after major surgery and reportedly occurs in approximately 36% of ICU patients
(RIFLE Risk/Injury/ Failure categories). It is associated with increased mortality, greater cost, and prolonged Intensive
Care Unit (ICU) and hospital stay, despite attempts to develop therapies to prevent or attenuate AKI, which have had
limited success. One major reason for this lack of success may be the result of delayed implementation due to the
inability to detect AKI early. Traditional biomarkers of AKI (creatinine and urea) do not detect injury early enough.
Thus, it is a priority to find reliable, early biomarkers that predict subsequent AKI. Innovative technologies such as func-
tional genomics and proteomics have facilitated detection of several promising early biomarkers of AKI, such as neu-
trophil gelatinase-associated lipocalin (NGAL), cystatin C (CyC), liver-type fatty acid binding protein (L-FABP),
interleukin-18 (IL-18), and kidney injury molecule-1 (KIM-1). These biomarkers have many potential applications
during anesthesia and in the ICU. They can be used to evaluate the effect of new techniques and therapies on kidney
function, as safety markers to monitor toxicity and as measures of treatment effect. For example, NGAL and cystatin
C have been used in a safety monitoring trial of hydroxyethylstarch therapy and to detect AKI early, during or imme-
diately after cardiac surgery. Clinical use beyond research settings is rapidly expanding.
(Minerva Anestesiol 2010;76:425-40).
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teins - Interleukin-18.

AKI is common with major surgery
and critical illness

Acute kidney injury (AKI) is the consensus
term now used to describe the continuum of

the condition previously called acute renal failure.
AKI as classified by the RIFLE criteria 1 (acronym
for Risk, Injury, Failure, Loss and Endstage) has
been reported to occur in approximately 36% of
critically ill patients and is common after major

surgery such as open heart surgery.2, 3 Although
the Acute Kidney Injury Network (AKIN) crite-
ria, based on the RIFLE classification system are
being used increasingly and are presumed to
improve sensitivity in diagnosing AKI, they have
not been shown to improve the ability to predict
outcomes.4, 5 The RIFLE criteria have been exten-
sively used and validated to classify renal function
in several populations with studies cumulatively
involving >250 000 subjects.6 Furthermore, a
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recent study found RIFLE to be more robust, with
a higher detection rate of AKI than AKIN in the
first 48 hours post-ICU admission.7 Therefore,
we favor the RIFLE classification for AKI.

AKI is independently associated with an
increased risk of death6 and with prolonged length
of stay.8, 9 Severe cases require costly treatment,
can result in prolonged kidney dysfunction, and
escalate the human and financial costs of care.
Therefore, it seems desirable to detect AKI as ear-
ly as possible in order to develop or implement
potentially protective therapy.

Why therapies have been unsuccessful

To date, attempts to develop therapies to pre-
vent or attenuate AKI have failed to show consis-
tently protective effects. The use of diuretics has
not proven to be of benefit. Fenoldopam, a vasodila-
tor, has shown promise in certain populations 10

but not in others; 11, 12 natriuretic peptides may be
of use in major surgery but have also not been effec-
tive in other situations.13, 14 The capacity of N-
acetyl cysteine to prevent AKI after radiocontrast
has been tested with unconvincing results, 15-17 and
the benefits of perioperative IV sodium bicarbon-
ate infusion in cardiac surgical patients 18 are yet
to be confirmed. The most widely accepted treat-
ment to prevent or treat AKI (although untested in
controlled trials) remains prompt fluid resuscitation
of circulatory volume and appropriate use of
inotropes/vasopressors to maintain adequate cardiac
output and perfusion pressure.19-21 Beyond these
measures, cases unresponsive to fluid resuscitation
in the presence of hyperkalemia, metabolic acido-
sis or fluid overload commonly receive renal replace-
ment therapy/dialysis to support the kidneys.

There are several reasons why no reproducibly
and consistently effective treatment for AKI has
been found. First, AKI can occur as a result of
multiple causes and disease processes. Whereas
certain treatments may benefit subgroups, hetero-
geneity of disease makes finding one treatment
for all types of AKI unlikely. Second, understand-
ing of the pathogenesis of AKI is limited. An
incomplete knowledge of the mechanisms involved
has resulted in difficulties in developing logical
approaches to prevention or treatment. Third,
interventions are implemented too late. This delay

is due to our reliance on conventional biomark-
ers (creatinine, urea, urine output) to diagnose
AKI. Such biomarkers either do not detect injury
in real-time and become abnormal many hours
later in the course of injury (creatinine or urea) or
lack specificity (urine output). To draw a parallel
with the treatment for acute myocardial infarc-
tion, one can easily imagine how difficult it would
be to show the benefits of thrombolysis or stent-
ing in the absence of troponin, electrocardiogram
changes or the presence of chest pain to allow ear-
ly and specific diagnosis within minutes instead
of hours or a day later. By analogy, if we could
detect AKI early, we would treat it more rapidly
and should have a better chance of preventing or
reducing injury, as is the case for several other acute
syndromes in medicine.

The limitations of traditional biomarkers

The traditional clinical biomarkers for the detec-
tion of AKI are creatinine, urea, and urine out-
put. All have serious limitations as early detectors
of AKI. Creatinine is the product of the break-
down of creatine to phosphocreatine in skeletal
muscle and of the subsequent liver metabolism of
creatine to form creatinine.22 It is produced and
released into plasma at a fairly constant rate and is
filtered by the glomerulus. A small amount is also
secreted into the urine. Creatinine is not reab-
sorbed in the tubules or metabolized by the kidney.
If filtering of creatinine is deficient, blood levels rise
with an inverse relationship with GFR.
Unfortunately, there are several limitations to
serum creatinine (SCr) as a biomarker of AKI.22

First, its release varies with age, gender, diet, mus-
cle mass, drugs, and vigorous exercise. Second,
secretion accounts for 10-40% of creatinine clear-
ance, 22 which could mask a decrease in GFR.
Third, the accuracy of SCr assays can be reduced
by artifact. Fourth, creatinine becomes abnormal
only when more than 50% of GFR is lost and may
require up to 24 hours before sufficient increases
in blood concentration are detectable.

Urea is a water-soluble, low molecular weight
by-product of protein metabolism. Its level is also
inversely related to GFR, but several factors affect
its production and clearance, limiting its reliabil-
ity in estimating GFR. Urea production is incon-
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stant, and values can be altered by changes in cir-
culatory volume, protein intake, gastrointestinal
bleeding, among other parameters. Rate of renal
clearance of urea is not constant; 40-50% of filtered
urea may be reabsorbed in the tubules.22

Consequently, urea is a poor measure of GFR,
requires time to accumulate, does not reflect real-
time changes in GFR and delays diagnosis. 

Urine output is measured routinely in operat-
ing rooms and ICUs with indwelling catheters. A
trend in urine output is a crude gauge of kidney
function and may be a more sensitive indicator of
changes in renal hemodynamics than a measure
of solute clearance.1 Nonetheless, many patients
with AKI do not have oliguria, and many patients
with oliguria in the operating room or ICU do
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TABLE I.—Characteristics, function and significance of NGAL, cystatin C and L-FABP.

Biomarker Molecular Origin
Normal concentration

Physiological function Significance of rise in level
weight Urine Plasma/Serum

NGAL

Cystatin C

L-FABP

21 kDa

13.3 kDa

14.3 kDa

Urine NGAL - mostly
local synthesis in kidney
(distal nephron) in
response to injury -
secreted into urine

Circulating NGAL - syn-
thesised sytemically in
response to renal injury
→ filtered by glomeru-
lus → uptake by proxi-
mal tubule epithelia →
pooled and little secreted
into urine

Neutrophils/macrophages
may be a third source of
renal NGAL - under
investigation

Produced at a constant
rate by nucleated cells →
filtered by the glomeru-
lus → almost complete-
ly reabsorbed and cata-
bolised (but not secre-
ted) in the proximal
tubules

Expressed in the liver, inte-
stine, pancreas, lung sto-
mach, and kidneys
NoiriDoi09. Production
in the liver seems to
determine blood levels.
Renal L-FABP is found
in cytoplasm of the pro-
ximal tubules

Bacteriostatic effect - binds
to iron-carrying molecu-
les (siderophores) which
are synthesised by specific
bacteria to gather iron. By
doing this, NGAL redu-
ces bacterial growth

Antioxidant effect - binds
to “human sideropho-
res” to transport iron
into target cells thus
stopping free and reac-
tive iron from producing
oxygen radicals which
can cause oxidative stress
and cell injury

Scavenges intracellular iron
for extracellular export
(hypothesis)

Acts as a growth factor -
regulates cell prolifera-
tion, apoptosis and diffe-
rentiation (supported by
increasing evidence)

Potent inhibitor of lysoso-
mal proteases (inhibits
breakdown of lysosomal
protein) and extracellu-
lar inhibitor of cysteine
proteases (prevents bre-
akdown of extracellular
protein)

Renal L-FABP helps main-
tain low levels of free FAs
in the cytoplasm by a)
binding to them and tran-
sporting them to cell
components to accelera-
te FA metabolism and by
b) binding to free FAs and
being excreted from the
proximal tubule cells into
urine for elimination 26

Tubular stress/injury. The-
re is an earlier rise in uri-
ne than serum

Change in GFR is reflec-
ted in changes in serum
and urine levels of cysta-
tin C - acts as a marker
of GFR

Tubular stress/injury, whi-
ch results in an accumu-
lation of free FAs in the
proximal tubules 23

There is an earlier rise in
urine than serum

Adults

Children

Children
(CPB)

Adults
(CIN)

1.0-20.0
ng/mL
1.0-20.0
ng/mL

<0.1 mg/g
Cr 24

<10 ng/mg
Cr/L
Portilla
et al.27

5-20 µg/g
Cr 25

Nakamura
et al.25

70-105
ng/mL
30-80
ng/mL

<1-1.5
mg/L 

60-110
ng/mL27
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not develop AKI. Finally, many drugs used in the
operating room or ICU (i.e., diuretics and vaso-
pressors) act as additional confounders. 

In response to these problems, innovative tech-
nologies such as functional genomics and pro-
teomics have facilitated the detection of several
potential earlier biomarkers of AKI. Some of the
most promising biomarkers include neutrophil
gelatinase-associated lipocalin (NGAL), cystatin
C (CyC), and liver-type fatty acid binding pro-
tein (L-FABP), which have now been evaluated
in several populations.

NGAL

The expression of NGAL in early, acute tubu-
lar injury was identified using functional genomics.
NGAL is a measure of tubular stress (Table I); its
concentration increases dramatically in response to
tubular injury and precedes rises in SCr by >24
hours.28 NGAL normally exerts protective bacte-
riostatic and antioxidant effects involving iron
transport and is thought to act as an iron scav-

enger and growth factor 29, 30 (Table I). The pro-
posed role of NGAL and its twin molecule, hep-
cidin (a “master regulator” of iron 29) are summa-
rized in Figure 1. 

NGAL has been intensely investigated in recent
years, predominantly in adult cardiac surgery. ELISA
techniques have been used to measure NGAL; how-
ever, accurate and sensitive point of care tests that
reduce costs and the potential for measurement
error are now available 32, 33 (Tables II-IV).

Cardiac surgery – children

In a landmark study, diagnosis of AKI by SCr
occurred 1-3 days after surgery, whereas plasma
and urine NGAL levels were powerful independ-
ent predictors of AKI within 2 hours of surgery
(Table IV). Subsequent studies confirmed these
findings 27, 32, 33 (Table IV). Moreover, plasma
NGAL predicted duration of AKI, length of stay
and mortality. 

Cardiac surgery – adults

The findings in children were broadly confirmed
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TABLE II.—Performance of NGAL in diagnosis of AKI in adults: studies with AUC-ROC analysis.

Year Authors Setting Age SexF Existing
% AKI AKI Definition Timing Sample

% renal disease (↑ in SCr) (AKI) sizeexcluded

NGAL
2009 Liangos et al.38 CSA 68 28 * † 13 ≥50% 72 h 103
2009 Tuladhar et al.39 CSA 67 30 Y 18 >44.2 µmol/L 48 h 50
2009 Han et al.37 CSA NA NA NA 40 ≥26.5 µmol/L 72 h 90

2009 Haase-Fielitz et al.36 CSA 70 39 Y 23 >50% 5 days 100

2009 Haase-Fielitz et al.35 CSA 70 39 * ‡ 39 >25% 5 days 100
2009 Haase et al.34 CSA 70 39 * ‡ 46 >50% or >26.5 µmol/L or ¥ 48 h 100
2008 Xin et al.40 CSA 38 56 N 27 >50% or ≥26.5 µmol/L or ¥ 48 h 33

2008 Wagener G. et al.45 CSA 63 34 § 20 ≥50% or >0 26.5 µmol/L 48 h 426

2008 Koyner et al.24 CSA 65 29 Y 47 ≥25% or RRT 72 h 72

2006 Wagener G. et al.41 CSA 68 35 * 20 ≥50% 10 days 81

2009 Makris et al.43 Trauma NA 19 Y NA NA 5 days 31
2008 Ling W. et al.42 CIN 67 40 N NA ≥25% or > 44.2 µmol/L 72 h 40
2008 Nickolas et al.44 ED 60 49 * 5 ≥50% or 25%↓ in eGFR Hosp stay 635

CSA: cardiac surgery associated AKI; CIN: contrast induced nephropathy; ED: emergency department; Y: yes; N: no; NA: not available or not appli-
cable; RRT: renal replacement therapy; Hosp stay: hospital stay; Quantikine® - R&D systems. *: dialysis, †: transplant, ‡: SCr >300 µmol/L; §:
endstage renal disease; ¥: urine output <0.5 mL/kg/h for >6 h.
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Time from Cutoff Urine Plasma/Serum AUC-ROC

Instrument procedure/
Urine Plasma Sensitivity Specificity Sensitivity Specificity Urine Plasmaadmission (h) % % % % % %

Quantikine® 2 166 ng/mg 67 11 50
ELISA 2 393 ng/mL 426 ng/mL 93 78 80 67 96 85
NA 0 NA NA NA 59

3 NA NA NA 65
Triage®Biosite ICU/6hrs 150 ng/mL 79 78 80

24 90 ng/mL 91 76 87
Triage®Biosite ICU/6hrs 145 ng/mL 68 64 67
Triage®Biosite ICU >150 ng/mL 73 74 77
ELISA kit 2 250 µgL 71 73 88

2 250 µg/mmol 81 78 93
ELISA kit 0 23.5 ng/mL 31 81 57

3 18.1 ng/mL 38 78 60
18 15.6 ng/mL 39 78 61

ELISA ICU 300 ng/mg 67 62 NA NA 71 53
ICU+6hrs 300 ng/mg 34 86 NA NA 70 46

Immunoblot 3 213 ng/mL 69 65 74
18 213 ng/mL 73 78 80

ELISA 0 25 ng/mL 91 95 98
ELISA kit 24 9.85 ng/mL 77 70 73
Immunoblot 0 130 µg/gCr 90 100 95

CSA: cardiac surgery associated AKI; CIN: contrast induced nephropathy; ED: emergency department; Y: yes; N: no; NA: not available or not
applicable; RRT: renal replacement therapy; Hosp stay: hospital stay; Quantikine® - R&D systems. *: dialysis, †: transplant, ‡: SCr >300 µmol/L;
§: endstage renal disease; ¥: urine output <0.5 mL/kg/h for >6 h.

Figure 1.—A) Proposed model of NGAL and hepcidin-mediated iron trafficking in the proximal tubule. NGAL bound to
siderophore and iron, delivers iron to cells via megalin and NGAL receptors. In the endosome, NGAL releases iron, which pro-
motes expression of iron-dependent genes (e.g., ferritin), stimulates epithelial proliferation and reduces renal damage. Iron
moves out of cells via the ferroportin pathway.28 Diagram modified from Schmidt-Ott et al. 2007.30 B) Model representing poten-
tial mechanisms and pathways present in renal injury. Local and systemic NGAL expression increases. Tubular injury results in
disruption to megalin receptor function, reduced NGAL-mediated intracellular iron uptake, and subsequent increase in urine
and serum NGAL concentration. With inflammation, hepcidin is up-regulated and binds to ferroportin, which is internalized,
endocytosed and degraded. Absence of the ferroportin pathway for iron removal promotes the accumulation of intracellular iron,
which reduces extracellular free reactive iron, thereby, reducing oxidative stress. The association of higher hepcidin levels with
those that do not develop AKI vs. those that develop AKI after cardiopulmonary bypass surgery is consistent with this pro-
posed mechanism.31
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in adults, albeit with somewhat diminished accu-
racy 34, 36, 45 (Table II), with an AUC of 0.77-0.96
34, 36, 39, 40 (Table II). Moreover, plasma NGAL was
an independent predictor of AKI duration and
severity, 34 of length of ICU stay, 34 and of the need
for renal replacement therapy, and of hospital death
35, 36 (Table V). The predictive value of NGAL
post cardiac surgery was stronger with a strict def-
inition of AKI (>50% versus >25% increase in

SCr) and increased with progressive severity of
AKI (Table II).35

Contrast-induced nephropathy (CIN)

In children with congenital heart disease, Hirsch
et al.52 found that both serum and urine NGAL
were excellent predictors for AKI at 2 hours after
contrast (Table IV). In adults with normal SCr, 58

NGAL levels were significantly higher in urine at
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TABLE III.—Performance of Cystatin C in diagnosis of AKI in adults: studies with AUC-ROC analysis.

Year Authors Setting Age SexF Existing
% AKI AKI Definition Timing Sample

% renal disease (↑ in SCr) (AKI) sizeexcluded

Cystatin C
2009 Liangos et al.38 CSA 68 28 * † 13 ≥50% 72 h 103
2009 Haase-Fielitz et al.36 CSA 70 39 N 23 ≥50% 5 days 100

70 40 Y 23 ≥50% 5 days 73

2009 Haase et al.34 CSA 70 39 * ‡ 46 ≥50% or >26.5 µmol/L or § 48 h 100
2008 Koyner et al.24 CSA 65 29 Y 47 ≥25% or RRT 72 h 72

2007 Ling et al.48 Tplant-liver 47 10 NA NA GFR<80 mL/min/1.73 m2 1 wk 30
2004 Daniel et al.47 Tplant-ren’ 40 35 NA 27 Inulin Cl <90 mL/min NA 60

2005 Villa et al.49 Crit ill 54 32 Y 50 Cr Cl <80 mL/min/1.73 m2 NA 50
2004 Ahlstrom et al.46 Crit ill 55 32 N 27 ≥50% ICU stay 202

CSA: cardiac surgery associated AKI; Tplant-liver/ren’: post-liver or renal transplant; Crit ill: critically ill; NA: not available or not applicable;
Inulin Cl: inulin clearance; Cr Cl: creatinine clearance; Y: yes; N:no. *: dialysis; †: transplant; ‡: SCr >300 µmol/L; §: urine output <0.5 mL/kg/h for
>6 h. BNII automat and PENIA - Dade Behring. ELISA kit-CyC - Biovendor LLC.

TABLE IV.—Performance of biomarkers in diagnosis of AKI in children: studies with AUC-ROC analysis.

Year Authors Setting Age SexF Existing
% AKI AKI Definition Timing Sample

% renal disease (↑ in SCr) (AKI) sizeexcluded

NGAL
2008 Portilla et al.27 CSA 3.5 48 Y 52 ≥50% 5 days 40
2008 Bennett et al.32 CSA 4 48 Y 51 ≥50% 3 days 196
2007 Dent et al.33 CSA 4 47 Y 37 ≥50% 3 days 120
2005 Mishra et al.50 CSA 4 37 Y 28 ≥50% 3 days 71

2008 Wheeler et al.53 SIRS/SS 3 35 Y 15 >176.82 µmol/L or * 7 days 143
2007 Hirsch et al.52 CIN 7 43 Y 12 ≥50% 24 h 91

Cystatin C
2007 Herrero-Morin et al.51 Crit ill 2.9 44 Y 56 Cr Cl <80 ml/min/1.73m2 ICU stay 25

L-FABP
2008 Portilla et al.27 CSA 3.5 48 Y 50 ≥50% 5 days 16

CSA: cardiac surgery associated AKI; CIN: contrast induced nephropathy; Crit ill: critically ill; SIRS/SS: systemic infammatory response
syndrome/Septic shock; NA: not available or not applicable; Cr Cl: creatinine clearance; Y: yes; N: no; Wblot: Western blot. *: urea >100 mg/dL. Triage®

- Biosite, ARCHITECT® - Abbott.
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2 hours and in serum 4 hours post contrast in
patients who developed CIN, whereas SCr was
significantly higher at 48 hours. Consistent with
this, Ling et al.42 found urine NGAL performed
well in the early diagnosis of CIN (Table II).

Critically ill

Wheeler 53 found a significant difference in
serum NGAL between children who were healthy,

critically ill with SIRS, and critically ill with sep-
tic shock (medians 80, 108 and 303 ng/mL, respec-
tively). Furthermore, NGAL was significantly ele-
vated in those with AKI compared to those with-
out. In addition, Zappitelli et al.55 found that there
was a progressive increase in urine NGAL con-
centration with worsening pRIFLEmax and that
urine NGAL was a good diagnostic marker for
persistent AKI (Table VI). In critically ill adults,54
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Time from Cutoff Urine Plasma/Serum AUC-ROC

Instrument procedure/
Urine Plasma Sensitivity Specificity Sensitivity Specificity Urine Plasmaadmission (h) % % % % % %

PENIA 2 192 ng/mg 42 86 50
Nephelometry ICU/6 h >1.1 mg/L 77 86 83

24 >1.2 mg/L 91 64 84
Nephelometry ICU/6 h >1.1 mg/L 75 89 78

24 >1.2 mg/L 86 80 84
Nephelometry ICU >1.1 mg/L 74 67 76
ELISA kit-CyC ICU 0.35 mg/g 58 72 NA NA 69 62

ICU+6 h 0.11 mg/g 45 84 NA NA 72 63
NA day 1,4,7 1.57 mg/L 85 85 94
BNII automat ~6.7 mths post 1.18 mg/L 72 80 NA

~6.7 mths post 1.52 mg/L 60 87 NA
Nephelometry NA NA NA NA 93
BNII automat 24 NA NA NA 89

CSA: cardiac surgery associated AKI; CIN: contrast induced nephropathy; ED: emergency department; Y: yes; N: no; NA: not available or not
applicable; RRT: renal replacement therapy; Hosp stay: hospital stay; Quantikine® - R&D systems. *: dialysis, †: transplant, ‡: SCr >300 µmol/L;
§: endstage renal disease; ¥: urine output <0.5 mL/kg/h for >6 h.

Time from Cutoff Urine Plasma/Serum AUC-ROC

Instrument procedure/
Urine Plasma Sensitivity Specificity Sensitivity Specificity Urine Plasmaadmission (h) % % % % % %

ELISA 4 100 ng/mgCr 100 100 100
ARCHITECT® 2 100 ng/mL 82 90 95
Triage® 2 150 ng/mL 84 94 96
ELISA & Wblot 2 25 µg/L 25 µg/L 100 98 70 94 100 91

2 50 µg/L 100 98 100
ELISA day 1 139 ng/mL 86 39 68
ELISA 2 100 ng/mL 100 ng/ml 73 100 73 98 92 91

6 100 ng/mL 100 ng/ml 90 99 73 100 97 95

Nephelometry 1-6days 0.6 mg/L 85 63 85

ELISA & Wblot 4 486 ng/mgCr 71 68 81

CSA: cardiac surgery associated AKI; CIN: contrast induced nephropathy; ED: emergency department; Y: yes; N: no; NA: not available or not
applicable; RRT: renal replacement therapy; Hosp stay: hospital stay; Quantikine® - R&D systems. *: dialysis, †: transplant, ‡: SCr >300 µmol/L;
§: endstage renal disease; ¥: urine output <0.5 mL/kg/h for >6 h.
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the median urine NGAL at enrolment was signif-
icantly higher in those who developed AKI with-
in 48 hours.

Kidney transplant

In a multicenter study, urine NGAL measured
on the day of transplant predicted delayed graft
function and dialysis (AUC 0.9).59 In addition,
Kusaka et al.60 found that a decrease in NGAL
predicted organ recovery before a decrease in SCr
or recovery of urine output. 

NGAL and chronic kidney disease (CKD)

NGAL in serum and urine appears to reflect
the presence, severity 61, 62 and progression 63 of
CKD. NGAL seems to be a better predictor of
GFR than SCr (and than CyC when GFR <30
mL/min 62, 64) in patients with CKD.61

Urine NGAL was also strongly predictive of
AKI in children with diarrhea-associated hemolyt-
ic uremic syndrome, 65 in multitrauma 43 and in
emergency department 44 patients (Table II). 

A recent systematic review and meta-analysis
of NGAL studies using standardized data sheets
sent to authors, confirmed the value of NGAL as
an early predictor of AKI across settings. Urine
and plasma/serum NGAL performed similarly
well, and the performance of NGAL improved
with standardized laboratory platforms versus
research-based assays (cutoff >150 ng/mL). NGAL

level had prognostic value for renal replacement
therapy and mortality.66

NGAL is now the most promising novel renal
biomarker 39, 50, 52 in urine and plasma. The cut-
off values for NGAL range widely, with higher
values used for adults versus children (effect of age
and co-morbidities) and for cardiac surgical stud-
ies versus CIN (lower magnitude of injury in
CIN). Therefore, it seems that each clinical set-
ting would require the establishment of a “nor-
mal” range and cutoff value. As a general rule,
however, a concentration >150 ng/mL can iden-
tify patients at high risk for AKI, and a level
>350 ng/mL, those at high risk for renal replace-
ment therapy. 

If we compare the performance of NGAL in
diagnosing AKI to widely used markers like tro-
ponin I, which has carried an AUC in the range of
0.7-0.8 for diagnosis of acute myocardial infarc-
tion,39, 67 its performance would seem sufficient
for clinical adoption and inclusion into an early
diagnostic panel for AKI. Clinical use of NGAL
beyond confirmation of its utility is rapidly expand-
ing.18, 68-70

Cystatin C 

CyC is a low molecular weight cysteine pro-
tease inhibitor (Table I, Figure 2). Its serum level
is determined by glomerular filtration, in contrast
to NGAL, which responds to stimuli and is a meas-
ure of tubular stress (Table I, Figure 2). Therefore,
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TABLE V.—Performance of biomarkers in prognosis of outcomes: studies with AUC-ROC analysis.

Year Authors Setting Age SexF Existing
% AKI AKI Definition Timing Sample

% renal disease (↑ in SCr) (AKI) sizeexcluded

NGAL
2009 Haase-Fielitz et al.36 CSA 70 39 * 23 >50% 5 days 100
2009 Siew et al.54 Crit ill 53 58 † ‡ § 14 ≥50% or ¥ 24 h 451

22 ≥50% or ¥ 48 h 451
2007 Zappitelli  et al.55 Crit ill ~6 46 § 74 ≥50% 14 days 140

Cystatin C
2004 Herget-Rosenthal et al.56 Risk for AKI 67 36 N 52 ≥50% NA 85
2004 Herget-Rosenthal et al.57 ATN 69 36 N All ATN NA 73

2004 Ahlstrom et al.46 Crit ill 55 32 N 27 ≥50% 24 h 202

CSA: cardiac surgery associated AKI; Crit ill: critically ill; ATN: acute tubular necrosis; Y: yes; N: no; BNII Automat - Dade Behring; NA: not appli-
cable; R minus 1/2: 1 or 2 days before SCr R-criteria (RIFLE) was fulfilled; RRT: renal replacement therapy; AKI 24/48 h: sustained AKI within 24/48
h; AKI next 48 h: persistent AKI in the next 48 h; H death: in-hospital mortality. *: SCr >300 µmol/L; †: dialysis; ‡: transplant; §: endstage renal disea-
se; ¥: >26.5 µmol/L. 
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changes in serum and urine levels of CyC reflect
changes in GFR. Given that its levels are not sig-
nificantly affected by age, gender, race, muscle
mass, infection, liver disease or inflammatory dis-
ease and that it is not secreted by the tubules, CyC
is probably a better measure of glomerular function
than SCr.49, 71

Comparison with SCr

In a systematic review of 24 studies, Laterza et
al.72 found CyC superior to SCr in detecting
“impaired GFR” (0.95 vs. 0.91, P=0.003). Apart
from two unfavorable results, 46, 73 the superiority
of CyC over SCr as a diagnostic marker for AKI is
supported by several studies of ICU patients.49, 51,
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Time from Cutoff Urine Plasma/Serum AUC-ROC

Instrument procedure/
Urine Plasma Sensitivity Specificity Sensitivity Specificity Urine Plasma Outcome

admission (h) % % % % % %

Triage®Biosite NA 340 ng/mL 75 100 83 RRT
ELISA kit day 1 NA NA NA 70 AKI 24 hrs
ELISA kit day 1 NA NA NA 66 AKI 48 hrs
ELISA NA 0.2 ng/mg 78 67 79 AKI next 48hrs

Nephelometry R minus 2 NA 53 82 69 RRT
R minus 1 NA 76 93 75 RRT

Nephelometry NA 1 g/molCr 92 83 92 RRT
BNII automat NA NA 75 50 62 H death

CSA: cardiac surgery associated AKI; Crit ill: critically ill; ATN: acute tubular necrosis; Y: yes; N: no; BNII Automat - Dade Behring; NA: not appli-
cable; R minus 1/2: 1 or 2 days before SCr R-criteria (RIFLE) was fulfilled; RRT: renal replacement therapy; AKI 24/48 h: sustained AKI within 24/48
h; AKI next 48 h: persistent AKI in the next 48 h; H death: in-hospital mortality. *: SCr >300 µmol/L; †: dialysis; ‡: transplant; §: endstage renal disea-
se; ¥: >26.5 µmol/L. 

Figure 2.—A) Cystatin C is produced at a constant rate by nucleated cells. Under normal conditions, cystatin C is filtered by the
glomerulus, reabsorbed by the proximal tubule and completely catabolized. Therefore, its concentration in urine is negligible, and
in blood is low. B) With tubular injury, there is less filtration of cystatin C at the glomerulus due to proteinuria/ blockage/cell dam-
age, therefore, the concentration of cystatin C in the blood increases. Less reabsorption of cystatin C by the proximal tubule due to
injury also leads to increased concentration of cystatin C in the urine. 
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56, 57, 74 Using the combined results of 11 datasets,
Royakkers et al.75 found the diagnostic accuracy for
GFR determination of CyC superior to that of
SCr: AUC 0.93 vs. SCr 0.84, and CyC is now
often used in this role.68, 76 The use of CyC as a
biomarker for AKI has been investigated in sev-
eral settings.

Cardiac surgery

In adults, despite an inconclusive result from
Heise et al.,77 other studies found that CyC predict-
ed AKI early before SCr but that it was not supe-
rior to NGAL (Table II-III).24, 36 Notably, after
excluding those with preoperative renal impair-
ment, Haase-Fielitz et al. found that the predic-
tive performance of CyC for AKI was reduced
from 0.83 to AUC 0.78, whereas that of NGAL
remained the same (Table II-III).36 In this setting,
the predictive value of CyC appears to be partly as
a marker of chronic renal injury rather than acute
injury, 34 and, as such, it may be useful as a com-
plementary marker to NGAL. CyC displayed con-
siderable prognostic value in Haase-Fielitz’ study;
in this study, serum CyC and plasma NGAL were
independent predictors of AKI and excellent pre-
dictors of the need for renal replacement therapy
and of hospital death.36 In addition, Haase et al.34

found that CyC was an independent predictor of
severity and duration of AKI after adult cardiac
surgery. 

Post transplant

After kidney transplant, CyC predicted delayed
graft function, but the prediction was relatively
late 78, 79 (at three days). In contrast, after liver
transplants, Hei et al.80 found that postoperative
CyC predicted AKI earlier and more accurately
than SCr (within 24 h) and that preoperative
serum CyC also predicted postoperative AKI. Ling
et al.48 confirmed these findings (Table III). 

Post contrast

Rickli et al.81 found that, after contrast appli-
cation, serum CyC levels increased before SCr.
Furthermore, Kimmel et al.82 found that serum
CyC reflected contrast-induced changes better
than SCr. Another study83 found that urine CyC
rose significantly at 8 hours (P<0.05) and at 24 h

(P<0.01) after contrast, with no change in creati-
nine. 

Thus, CyC is an earlier and more accurate mark-
er of AKI than SCr, but it is generally preceded
by NGAL in detecting AKI; elevated preoperative
CyC before liver transplant predicts postoperative
AKI; CyC is more sensitive to contrast-induced
changes than SCr; and CyC is a better marker of
chronic renal impairment and its effect on out-
comes, 34, 80 which accounts for part of its diag-
nostic value. As both rise sequentially, CyC could
complement NGAL, which can lose diagnostic
accuracy in the presence of co-morbidities. Given
that automated, standardized immunonephelo-
metric assays are commercially available and pro-
vide results in minutes, CyC represents a feasible
and promising biomarker for AKI. Its inclusion
in a sequential AKI diagnostic panel with NGAL
appears logical. 

L-FABP

L-FABP is expressed in various organs includ-
ing liver and kidney.26 Its function in the kidney is
presumed to be the same as that in the liver: cel-
lular uptake of fatty acids (FAs) from plasma and
promotion of intracellular FA metabolism. Free
FAs are easily oxidized, leading to oxidative stress
that can induce cellular injury. Through its involve-
ment in regulation of FA metabolism, L-FABP
may inhibit the accumulation of intracellular FAs
(Table I, Figure 3), thereby preventing oxidation
of free FAs.84 L-FABP may be an important cellu-
lar antioxidant during oxidative stress.

L-FABP can be filtered via glomeruli and reab-
sorbed in the proximal tubule cells due to its small
size, which could partly explain the increase of L-
FABP in proximal tubular cell injury. However,
an experimental study 23 revealed that renal L-
FABP expression was up-regulated and that uri-
nary L-FABP excretion was accelerated by accumu-
lation of free FAs. Renal L-FABP may help main-
tain low levels of free FAs in the cytoplasm by facil-
itating their intracellular metabolism and their
excretion in urine (Table I, Figure 3).26 This is
consistent with the early and exponential rise in
urine L-FABP compared with a later and more
modest rise in serum L-FABP in contrast-induced
nephropathy in mice 85 and post-cardiac surgery in
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children.27 ELISA techniques have been used to
measure L-FABP levels; however, a urine dipstick
kit has been developed and requires evaluation.26

In an experimental study, urine L-FABP showed
great potential for early and accurate detection of
histological and functional decline in both nephro-
toxin-induced and ischemia-reperfusion injury in
mice.86 Dose-response to injury was well-reflect-
ed in L-FABP levels in this study; severity of his-
tological injury increased with ischemia time and
cisplatin dose and correlated well with L-FABP
levels. Urine L-FABP increased after 1 h, even in
mice subjected to only 5 min of ischemia.86

In a clinical study,25 13 of 66 patients had sig-
nificantly elevated urine L-FABP before non-emer-
gency angiogram; later, all 13 showed contrast-
induced nephropathy, whereas no patient with
low urine L-FABP showed signs of nephropathy.
Furthermore, pre-contrast SCr showed no differ-
ence between the AKI/no AKI groups. Urine L-
FABP appears to be a more sensitive predictor of
AKI than SCr and could serve as a clinical predic-
tor of contrast-induced nephropathy. In a further
study, higher urine L-FABP levels differentiated
patients with septic shock from those with severe
sepsis, from those with AKI, and from healthy
controls.87 Of the septic shock patients; urine L-
FABP levels in survivors were reduced by treat-
ment. Non-survivors had higher urine levels with

a smaller reduction after treatment compared with
survivors. Thus, L-FABP may be useful in treat-
ment evaluation. Urine L-FABP can predict AKI
in pediatric cardiopulmonary bypass surgery 27

with an AUC at 4 h post-surgery of 0.81 (Table
IV). 

Urine L-FABP shows promise as an early, accu-
rate biomarker of AKI; however, it appears to rise
later than NGAL (pediatric bypass surgery, 4 h L-
FABP vs. 2 h NGAL). The predictive ability of L-
FABP for AKI requires further clinical confirma-
tion in different patient populations. 

Interleukin-18 (IL-18)

IL-18 is a proinflammatory cytokine and a pow-
erful mediator of ischemia-induced AKI in ani-
mal models. It is induced and cleaved in the prox-
imal tubule and is detected in urine following
experimental AKI.88, 89 In a cross-sectional study,
IL-18 levels were significantly greater in patients
with established AKI but not in those with uri-
nary tract infections, pre-renal azotemia or CKD.90

The AUC for the diagnosis of established AKI
(acute tubular necrosis) was 0.95. Consistent with
this finding, the AUC of IL-18 as an early predic-
tor of AKI in patients after kidney transplant, in
patients after pediatric cardiac surgery, and in those
with Acute Respiratory Distress Syndrome 59, 91,

92 showed good performance (0.70-0.9), with the
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Figure 3.—A) Under normal conditions, the urinary L-FABP concentration is low. B) Proposed model of renal L-FABP up-regu-
lation in the presence of fatty acid accumulation in proximal tubule cells after injury. Renal L-FABP and reabsorbed circulating L-
FABP, filtered by the glomerulus, maintain low levels of Free Fatty Acids (FFAs) in the cytoplasm by 1) binding FFAs and transport-
ing FAs to lysosomes to accelerate FA metabolism and by 2) binding FFAs and removing FAs from the cell for elimination via urine.
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strongest predictive value post transplant. However,
in critically ill children, IL-18 performed weak-
ly.93 Haase et al. concluded that IL-18 may be a
non-specific marker of inflammation but that it
did not predict AKI post cardiac surgery.94 In gen-
eral, IL-18 has displayed low sensitivity and high
specificity. There have been weak positive results
for the prognostic ability of urine IL-18: at 4 hours
after cardiac surgery, IL-18 weakly correlated with
number of days with AKI, 92 and in non-septic
critically ill children, IL-18 predicted severity of
AKI and mortality.93 Furthermore, IL-18 predicts
mortality in critically ill adults.91 IL-18 is specif-
ic to ischemic AKI but may also be a non-specif-
ic marker of inflammation and has shown incon-
sistent results. Its inclusion in urinary panels
requires further evaluation. 

Kidney injury molecule-1 (KIM-1)

KIM-1 is a transmembrane glycoprotein that
is not expressed in normal kidneys but that is up-
regulated in proximal tubular cells after ischemic
or nephrotoxic injury. The ectodomain segment of
KIM-1 is shed and is detected in urine.95, 96 In a
cross-sectional study,97 KIM-1 was markedly
induced in proximal tubules in biopsies from
patients with established AKI (largely ischemic),
and it differentiated ischemic AKI from pre-renal
azotemia and CKD. In another cross-sectional
study 98 of hospitalized patients, the AUC for
KIM-1 for differentiating those with AKI from
controls was 0.9. A further case-control study 98

found an AUC of 0.83 for KIM-1 for the diag-
nosis of AKI at 12 hours post-cardiopulmonary
bypass. In a recent prospective study of 90 adults
undergoing cardiac surgery, urinary KIM-1, N-
acetyl-β-D-glucosaminidase (NAG - a lysosomal
glucosidase abundant in tubular cells which is
excreted in the urine when proximal tubule cells are
damaged), and NGAL were measured.37 The AUC
for KIM-1 to predict AKI immediately post-sur-
gery (0.68), although low, was higher than those
for NAG and NGAL. Combining the three bio-
markers enhanced the sensitivity of early detec-
tion of postoperative AKI, and AUCs became 0.75
and 0.78. Furthermore, in a study that examined
the relationship between KIM-1 and a compos-
ite end-point (dialysis or death) in hospitalized

patients, there was a suggestion that elevated uri-
nary KIM-1 levels are associated with adverse out-
comes in hospitalized patients who develop AKI.99

The strength of KIM-1 appears to be detection of
existing AKI. Its inclusion in a urinary AKI pan-
el requires further investigation.

Conclusions

Given the heterogeneity of AKI and the settings
in which it occurs, it is likely that diagnosis and
classification of AKI will not be possible using one
biomarker alone, and a panel of biomarkers com-
parable to the panel of cardiac enzymes used to
diagnose and assess severity of acute myocardial
infarction will be required. Current key renal bio-
markers are NGAL and CyC, which 1) show great
promise and utility, 2) have commercially avail-
able assays to provide immediate results, and 3)
assess complementary aspects of renal injury
(NGAL - tubular stress; CyC - GFR). In terms of
sequence post-cardiac surgery, NGAL and L-FABP
have higher predictive accuracy for AKI in urine
and/or plasma early, at 2-4 h, which later wanes;
in contrast, the predictive accuracy of CyC, IL-
18 and KIM-1 increases at 12-24 h.100 Such infor-
mation can be used to include appropriate bio-
markers in sequential predictive panels, which
would open the door to a whole new area of
research and, perhaps, interventions.

Novel renal biomarkers can be used to evalu-
ate the effect of new techniques and therapies on
kidney function and to provide safety markers for
monitoring toxicity and AKI associated with estab-
lished treatments.18, 69, 101 To this end, NGAL, L-
FABP and CyC have superior sensitivity and detect
AKI earlier than SCr, enhancing the ability to
demonstrate benefits and to justify the implemen-
tation of therapies or kidney protective techniques
in evaluation studies. 

Optimum perioperative hemodynamic man-
agement and measures such as preoperative hydra-
tion for high risk patients could be more effective-
ly explored. In patients undergoing liver trans-
plantation or major surgery, in which AKI is com-
mon,48, 102 early detection of AKI with novel bio-
markers has great potential. Novel protective ther-
apies or those that have previously been difficult
to evaluate or administer in time to prevent or

MINERVA MEDICA COPYRIGHT®



Vol. 76 - No. 6 MINERVA ANESTESIOLOGICA 437

ACUTE RENAL BIOMARKERS MOORE

ameliorate AKI (e.g., N-acetyl cysteine, bicarbon-
ate or fenoldopam) could be more appropriately
assessed or administered in a targeted manner or,
in patients receiving nephrotoxins (such as cal-
cineurin inhibitors or aminoglycosides), renal
injury could be detected much earlier and drug
therapy adjusted. The potential benefit and mech-
anisms of volatile anesthetics for kidney protec-
tion 103-106 could also be investigated using novel
biomarkers. The above information is highly rel-
evant to the anesthesiologist; if early point-of-care
biomarker measurements (e.g., NGAL) were per-
formed during or immediately after major sur-
gery, this would allow timely implementation and
evaluation of potential protective therapies, either
intra-operatively or on ICU admission, targeted
to those at high risk of AKI. Indeed, the consider-
ation of pre- to postoperative changes in NGAL
concentration could also aid medical decision-
making, which might lead to improved outcomes.
Furthermore, if NGAL reflected the likelihood
for timely discharge, it may be useful in surgical
case and ICU bed planning. 
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